\(\int \frac {x^2 (a+b \text {csch}^{-1}(c x))}{\sqrt {d+e x^2}} \, dx\) [143]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [F(-2)]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\text {Int}\left (\frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}},x\right ) \]

[Out]

Unintegrable(x^2*(a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x)

Rubi [N/A]

Not integrable

Time = 0.07 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx \]

[In]

Int[(x^2*(a + b*ArcCsch[c*x]))/Sqrt[d + e*x^2],x]

[Out]

Defer[Int][(x^2*(a + b*ArcCsch[c*x]))/Sqrt[d + e*x^2], x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 10.03 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx \]

[In]

Integrate[(x^2*(a + b*ArcCsch[c*x]))/Sqrt[d + e*x^2],x]

[Out]

Integrate[(x^2*(a + b*ArcCsch[c*x]))/Sqrt[d + e*x^2], x]

Maple [N/A] (verified)

Not integrable

Time = 0.14 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.91

\[\int \frac {x^{2} \left (a +b \,\operatorname {arccsch}\left (c x \right )\right )}{\sqrt {e \,x^{2}+d}}d x\]

[In]

int(x^2*(a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x)

[Out]

int(x^2*(a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x)

Fricas [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.17 \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{2}}{\sqrt {e x^{2} + d}} \,d x } \]

[In]

integrate(x^2*(a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b*x^2*arccsch(c*x) + a*x^2)/sqrt(e*x^2 + d), x)

Sympy [N/A]

Not integrable

Time = 13.93 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.96 \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\int \frac {x^{2} \left (a + b \operatorname {acsch}{\left (c x \right )}\right )}{\sqrt {d + e x^{2}}}\, dx \]

[In]

integrate(x**2*(a+b*acsch(c*x))/(e*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*acsch(c*x))/sqrt(d + e*x**2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^2*(a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [N/A]

Not integrable

Time = 0.28 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{2}}{\sqrt {e x^{2} + d}} \,d x } \]

[In]

integrate(x^2*(a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)*x^2/sqrt(e*x^2 + d), x)

Mupad [N/A]

Not integrable

Time = 5.79 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.17 \[ \int \frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{\sqrt {e\,x^2+d}} \,d x \]

[In]

int((x^2*(a + b*asinh(1/(c*x))))/(d + e*x^2)^(1/2),x)

[Out]

int((x^2*(a + b*asinh(1/(c*x))))/(d + e*x^2)^(1/2), x)